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ABSTRACT: In this paper, an approximate analytical solution of time fractional Rosenau-Hyman equation 
arising in formation of pattern in liquid drops is obtained via fractional reduced differential transform method 
(FRDTM). The fractional derivatives are taken in Caputo sense. Approximate solution obtained by FRDTM is 
compared with the exact solutions and it is found that obtained results agreed excellently with exact 
solution. Then we provide a rigorous convergences analysis and error estimate of results obtained by 
FRDTM upto merely second approximation. Numerical simulations of the results are depicted through 
graphical presentations and comparison table of solutions obtained from other numerical solutions showing 
that present method gives reliable, efficient solution in the form of easily computable and convergent series.  
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I. INTRODUCTION 

The time fractional Rosenau-Hyman equation (FRH) 
arises in formation of pattern in liquid drops. Fractional 
Rosenau-Hyman equation studied and solved 
throughimplementation of VIM and HPM methods by 
Molliq and Noorani [1] which is given as  

     ���� = �������	 + �����	 + 3����	�����	,       (1) 
 
with initial condition                           ���, 0	 = − �� � cos� ����.                    (2) 

Where 0<α ≤ 1, c is an arbitrary constant, t>0 When α = 
1, equation (1) reduces to the classical RH equation [2]. 
Since several physical phenomena arising in 
engineering and applied sciences can be explained in 
better way by developing fractional order models. The 
fractional order equations response and consequent 
convergence to the integer order classical equations, 
has gain much attention amongst researcher now days. 
The fractional calculus are effectively applied for 
mathematical modelling of real world problems, e.g. 
traffic flow models, liquid patterns, earthquake 
modelling, diffusion models, wave propagation [3-6]. 
Due to nonlinear nature of the differential equation it is 
difficult to find exact analytical solutions of these models 
hence several analytical approximate schemes e.g. 
ADM [7], MVIM [8, 9], DTM [10], HPM [11] are 
developed. 
The major advantage of these approximate method is 
huge and complicated computations. To overcome 
these problems an analytical approximate method that 

is fractional reduced differential transform method 
(FRTDM) is developed by Keskin and Oturanc [12,13]. 
Many researchers explored the subject of fractional 
differential equations pertaining to different fractional 
operators like Clarkson and Mansfield [14] studied 
symmetries of a class of nonlinear third order partial 
differential equations, Mirza and Roy [15], studied the 
time fractional three dimensional thermoelastic problem 
of thin rectangular plate. Further Khan [16] obtained 
Complex order distribution and caputo fractional 
derivatives of I- function. 
In this paper, we developed the time fractional 
Rosenau-Hyman equation using FRTDM. The results 
obtained merely upto second approximation are much 
better approximation and converge rapidly than VIM and 
HPM. 
The paper is arranged as follows. In section II some 
basic definitions and preliminaries are given. Section III 
describes the method (FRTDM). Section IV, exact 
solutions of FRH equation is obtained via FRTDM and 
solution behaviour for different fractional order are 
shown graphically and error analysis and comparison 
table for solutions obtained from FRTDM, VIM and HPM 
are given. Section V concludes the present study. 

II. BASIC DEFINITIONS 

Definition 2.1. The Riemann-Liouville fractional integral 
operator [3] of order � > 0 of function  f : �� → � is 
defined as  � �x	 =  !"��	 # �� − $	�%!�& ��$	'$, � > 0      (3) 

 

 

 

e
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Definition 2.2. The Caputo fractional derivative [3] of order� > 0, ( − 1 < � ≤ (, � > 0  ( ∈  ℕ  is defined as             �����	 =  ./%��/ ���	 =      !"�/%�	 # �� − $	/%�%!�& ��/	 �$	'$                                                         (4) 

where f (t) has absolute continuous derivatives up to order (n-1). 

III. BASIC IDEA OF FRDTM 

In this section, we describe the basic properties of the fractional reduced differential transform method [12]. 
Let 0��, $	 be function of two variables which can be presented as product of two single variable functions as follows 
 

                                 0��, $	 = ∑ 2�3	�4546& ∑ 7�8	$9596& = ∑ ∑ :�3, 8	�4$9596&546&                                                                �5	 
 
Where :�3, 8	 is spectrum of 0��, $	. 
The fractional reduced differential transform function of 0��, $	, is given as 
 

              :<��	 = !"�<��!	 =��<0��, $	>�6�?                                                                                           (6) 

 
Where � is order of derivative �0 < � ≤ 1	 and 0��, $	 is analytic and continuous differentiable with respect to x and t. 
Further the inverse reduced differential transform of :<��	 is defined as 
 

                                0��, $	 = ∑ :<��	�$ − $&	<�5<6&                                                                               (7) 

IV. FRACTIONAL OPERATIONS OF FRDTM [13]  

Let ���, $	, @��, $	and 0��, $	are the analytic functions such as ���, $	 = �A%!BC<��	D, @��, $	 = �A%!BE<��	D and 0��, $	 =�A%!B:<��	D then following properties holds 
i. If ���, $	 = @��, $	 ± 0��, $	, then C<��	 = E<��	 ± :<��	 
ii. If���, $	 = G@��, $	 then C<��	 = GE<��	where G is any constant.  
iii. If ���, $	 = �H$/@��, $	 then C<��	 = E<%/��	 
iv. If ���, $	 = @��, $	. 0��, $	 then C<��	 = ∑ EJ��	:<%J��	<J6&  

v. If ���, $	 = KLK�L @��, $	 then C<��	 = KLK�L E<��	 
vi. If ���, $	 = KMNK�MN @��, $	 then C<��	 = "��<��O�!	"��<�!	 E<�O��	 
vii. If ���, $	 = @!��, $	@���, $	@���, $	, then C<��	 = ∑ ∑ C4��	CO%4C<%O��	O46&<O6&  

viii. If ���, $	 = @!��, $	@���, $	@���, $	@���, $	, then C<��	 = ∑ ∑ ∑ C9��	C4%9��	CO%4��	C<%O��	496&O46&<O6&  ix. If ���, $	 = �H$/, then C<��	 = �HQ�R − (	, Q�R	 = S1;  R = 00;  R ≠ 0V 
V. FRACTIONAL ROSENAU HYMAN EQUATION VIA FRDTM 

Applying FRTDM on equation(1), we find the following recurrence relation 
 

C<�!��	 = Γ��R + 1	Γ��R + � + 1	 XY CJ��	<
J6&

Z�Z�� C<%J��	 + Y CJ��	<
J6&

ZZ� C<%J��	                            
+ 3 Y ZZ� CJ��	<

J6&
Z�Z�� C<%J��	[                                                                                                                       �8	 

 
with initial conditions (2)                                     C&��	 = − �� � cos� ��                                                           (9) 

 
Using recurrence relation (8) and initial condition (9) we get 
For k=0 C!��	 = 1Γ�� + 1	 ]C&��	 Z�Z�� C&��	 + C&��	 ZZ� C&��	 + 3 ZZ� C&��	 Z�Z�� C&��	  ̂

C!��	 = 1Γ�� + 1	 _− 23 �� sin �2b 
For k=1, we get 

C���	 = Γ�� + 1	Γ�2� + 1	 XY CJ��	!
J6&

Z�Z�� C!%J��	 + Y CJ��	!
J6&

ZZ� C!%J��	 + 3 Y ZZ� CJ��	!
J6&

Z�Z�� C!%J��	[ 
C���	 = Γ�� + 1	Γ�2� + 1	 ]C&��	 Z�Z�� C!��	 + C!��	 Z�Z�� C&��	 + C&��	 ZZ� C!��	 + C!��	 ZZ� C&��	 + 3 ZZ� C&��	 Z�Z�� C!��	

+ 3 ZZ� C!��	 Z�Z�� C&��	c 
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C���	 = ��3Γ�2� + 1	 cos �2 

and so on C���	 = ��6Γ�3� + 1	 sin �2 ⋮     C���	 = − �f12Γ�4� + 1	 cos �2 

 
Therefore the approximate solution of equation (1) is given as 
 ���, $	 = − 83 � cos� �4 − 2��3 $�Γ�� + 1	 sin �2 + ��$��3Γ�2� + 1	 cos �2 + ��$��6Γ�3� + 1	 sin �2 − �f$��12Γ�4� + 1	 cos �2 … 

 
For � = 1, we get 
 ���, $	 = − 4�3 − 4�3 cos �2 − 2��3 $ sin �2 + ��6 $� cos �2 + ��36 $� sin �2 − �f�12	 $��24	 cos �2 + … 

���, $	 = − 4�3 − 4�3 cos �2 i1 − j�$ 2k l�
2! + j�$ 2k l�

4! … n − 4�3 sin �2 op�$2 q − j�$ 2k l�
3! + ⋯ s 

= − 4�3 _1 + cos �2 cos �$2 + sin �2 sin �$2 b 
 = − 4�3 _1 + cos p� − �$2 qb 
 
which is the exact solution [14], where|�� − �$	| ≤ 2u. 

Table 1: Error analysis of the II approximate solution of Fractional Rosenau-Hyman when α = 1 and c=1. 

 

x t 
II-Approx. result 

by 
FRTDM 

Exact 
Absolute Error = |vwxyz{ − v|}~��| 

u 4k  

0.2 -2.6100 -2.6100 0.0000 

0.4 -2.6426 -2.6420 0.0006 

0.6 -2.6628 -2.6609 0.0019 u 2k  
0.2 -2.3657 -2.3656 0.0001 

0.4 -2.4458 -2.4447 0.0011 

0.6 -2.5166 -2.5127 0.0039 

3u 4k  

0.2 -1.9642 -1.9640 0.0002 

0.4 -2.0797 -2.0781 0.0016 

0.6 -2.1902 -2.1848 0.0054 

u 

0.2 -1.4667 -1.4664 0.0003 

0.4 -1.6000 -1.5982 0.0018 
0.6 -1.7333 -1.7274 0.0059 

 
Table 2: Fifth term solution through VIM and HPM [1] when α = 1. 

x t VIM HPM u 4k  
0.2 -2.6099 -2.6099 

0.6 -2.6609 -2.6609 

1.0 -2.6590 -2.6589 u 2k  
0.2 -2.3655 -2.3655 

0.6 -2. 5126 -2.5126 

1.0 -2.6127 -2. 6127 3u 4k  

0.2 -0.4893 -0.4893 

0.6 -0.71125 -0.71125 

1.0 -0.9579 -0.9579 

u 

0.2 -1.4664 -1.4664 

0.6 -1.7273 -1.7273 

1.0 -1.9725 -1. 9725 
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Fig. 1. Comparison graph of Exact solution and solutions obtained by FRDTM, VIM, HPM when x=3*pi/4, α = 1.  

 
Fig. 2. Approximate solution u(x, t) obtained by FRDTM for x = pi/2 when different values of α. 

 
 

Fig. 3. Approximate solution u(x, t) obtained by FRDTM for x = pi/4 when different values of α. 
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Fig. 4. Approximate solution u(x, t) obtained by FRDTM for x = 3* pi/4 when different values of α. 

 

 
Fig. 5. Approximate solution u(x, t) obtained by FRDTM for x = pi when different values of  α. 

 

Fig. 6. Phase plot of solution behaviour u(x, t) at α = 0.5. 
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Fig. 7. Phase plot of solution behaviour u(x, t) when α = 0.75.  

 
Fig. 8. Phase plot of solution behaviour u(x, t) at α = 0.25. 

VI. NUMERICAL RESULTS AND DISCUSSIONS 

The comparison of the results obtained of the FRDTM 
merely at second approximation and the exact solution 
for α = 1 is given in table 1 for different values of x, t. 
Table 2 show the approximate solution using fifth 
iterates of VIM and HPM for α = 1, at different values of 
x, t. Fig. 1 show that the solution using second iterates 
of FRDTM converges faster than solution using fifth 
iterates of VIM and HPM when x=3*pi/4, α = 1. Variation 
of solution behaviour for different fractional orders are 
shown by Fig. 2 to 5 when x = pi/2, x=pi/4, x=3*pi/4, 
x=pi. Finally we present phase plot of u(x, t) for the 
different values of�through  Fig. 6-8. 

VII. CONCLUSION 

In the present paper the fractional order reduced 
differential transform method is applied for the Caputo 
time fractional order Rosenau-Hyman equation arising 
in the formation of pattern in liquid drops. The proposed 
solution of FRH equation with an initial condition is 
obtained in terms of power series, without involving the 
discretization, perturbation and He’s 
polynomials.Solution obtained by the method agree 
excellently with fifth terms solutions of VIM and HPM at 

just second approximation. Performed computation 
shows that the method is easy to implement with small 
size of computation and converge faster than 
approximate solution using the VIMand HPM. Therefore 
it is very effective and efficient semi-analytical method 
for recent appearance of non-linear fractional differential 
equations arises in some fields of applied mathematics.  

ACKNOWLEDGMENT  

The authors are grateful to the Dean Research, 
Poornima  University Jaipur  and Dr. Dinesh Kumar from 
Jai Narain Vyas University for providing their valuable 
suggestions. 

Conflict of Interest: The authors declares that have no 
conflicts of interest. 

REFERENCES 

[1]. Molliq, R.Y. and Noorani, M.S.M., (2012). Solving 
the Fractional Rosenau-Hyman Equation via Variational 
Iteration Method and Homotopy Perturbation Method. 
Hindawi Publication corporation, IJDE, Article 
ID:472030. 

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

-3

-2

-1

0

x

Order of derivative 0.75

t

u

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

-3

-2

-1

0

x

Order of derivative 0.25

t

u



Ramani et al., 
 
International Journal on Emerging Technologies   10(2): 408-414(2019)                             414 

 

[2]. Rosenau, P. and Hyman, J.M. (1993). Compactons, 
solitons with finite wavelength. Physical Review Letters, 
Vol. 70(5): 564-567. 
[3]. Hilfer, R., (2000). Application of Fractional Calculus 
in Physics. World Scientific, Singapore. 
[4]. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J., (2006). 
Theory and Applications of Fractional Differential 
Equations. Elsevier, Amsterdam. 
[5]. Cascaval, R.C., Eckstein, E.C., Frota, C.L., 
Goldstein, J.A., (2002). Fractional telegraph equations. 
J. Math. Anal. Appl., Vol. 276(1): 145-159. 
[6].  Yang, X.J., (2016). Fractional derivatives of 
constant and variable orders applied to anomalous 
relaxation models in heat transfer problems. 
Arxiv:1612.03202. 
[7].  Garg, M, Sharma, A., (2011). Solution of space time 
fractional telegraph equation by Adomian decomposition 
method. J. Inequal. Spec. Funct., Vol. 2(1): 1-7. 
[8]. Khan A.M., Lalita Mistry,(2016).Stability Analysis 
and Numerical Solution for the Fractional order 
Biochemical Reaction Model. Nonlinear Analysis and 
Differential Equations HIKARI Ltd., Vol. 4(11): 521 – 
530. 
[9]. Khan A.M., and Amit Chouhan, (2016). Approximate 
Solution of the Fractional Susceptible-Infected-
Recovered model by Modified Variational Iteration 

Method. Journal of Fractional Calculus and Applications 
(Egypt), Vol. 7(1):  147-153. 
[10]. Ravi Kant, A.S.V., Aruna, K., (2008). Differential 
transform method for solving linear and nonlinear 
systems of partial differential equations. Phys. Lett. A , 
Vol. 372(46): 6896-6898. 
[11]. Kumar, S., Singh, O.P. (2010). Numerical Inversion 
of the abel integral equation using homotopy 
perturbation method. Z Naturforsch, Vol. 65(1): 677-682. 
[12]. Keskin, Y. and Oturanc, G. (2010). Reduced 
differential transform method, a new approach to 
fractional partial differential equations. Nonlinear Sci. 
Lett., Vol. 1(1): 61-72. 
[13]. Keskin, Y., (2010). Ph.D. Thesis. Selcuk University 
(in Turkish). 
[14]. Clarkson, P.A. and Mansfield, E.L. (1997). 
Priestley, Symmetries of a class of nonlinear third order 
partial differential equations. Mathematical and 
computing modelling, Vol. 25(8): 195-212. 
[15].  Hamna Mirza and Roy, H.S., (2019). Study of time 
fractional three dimensional thermoelastic problem of 
thin rectangular plate. International Journal of 
Theoretical & Applied Sciences, Vol. 11(1): 52-63. 
[16].  Khan, A.M., (2013). Complex order distribution 
and caputo fractional derivatives of I- function. 
International Journal of Theoretical & Applied Sciences, 
Vol. 5(1): 9-13. 

 
 
 
 
 
How to cite this article: Ramani, P., Khan, Arif M. and Suthar, D.L. (2019). Revisiting Analytical-Approximate 
Solution of Time Fractional Rosenau-Hyman Equation via Fractional Reduced Differential Transform Method. 
International Journal of Emerging Technologies, 10(2): 408–414. 

 


